非对称竞争下的电商动态定价策略*

张 昊

内容提要:本文考察了处于不对称强弱关系中的电商动态定价策略,并分析其竞争效应 结果表明:电商可以通过高低定价实现对急需型顾客的价格歧视,并利用低价匹配策略削弱竞争对手的降价意愿,从而在动态价格调整中产生协调效果,抬高面向不同顾客群体的均衡价格。从竞争效应看相比独家经营情形,存在低价匹配策略的非对称双寡头博弈均衡中,优势电商在高、低两个价位的定价水平总是更低,而弱势电商的定价则有可能相同甚至更高。使用2020年8月至2022年1月在京东、苏宁按月采集的四大类家电产品的型号、价格及市场进入退出数据进行经验分析,印证了有关定价行为特征及竞争效应的理论推断。本文深化了对电商复合定价行为的认识,对优化线上市场具有启示意义。

关键词: 电商 价格歧视 高低定价 价格匹配 隐性合谋

一、引言

近年来,大型电商企业快速发展,对城乡产业、消费与社会发展起到了重要作用(汪阳洁等,2022;马述忠和房超 2021)。同时,电商定价行为及其影响越来越受到人们的关注。线上市场信息成本较低,竞争应该更加激烈和充分(Stigler,1961;Bakos,1997),现实中也不乏"电商价格大战"的报道。但随着消费者的搜寻习惯发生变化,电商也可以利用线上市场的新特点提升利润水平,并且行为更加隐蔽(Sarvary & Lal,1999;Zettlemeyer,2000;孙震等 2021)。目前,中国线上市场呈现出调价频率高、幅度大的动态定价特征(Gorodnichenko et al. 2018;姜婷凤等 2020),且既存在价格匹配现象、又有价格离散表现(张昊 2018;孙震等 2021;严玉珊 2022)。可以认为,频繁调价是电商采取"高低定价"(high-low price)所致。拥有市场势力的卖家可以将其作为价格歧视的一种形式,并由此改变顾客价格预期以增加销量。价格匹配则表现为不同卖家给出一致的价格,这既可能是竞争迫使各方定价都趋于边际成本,也可能是出现了合谋行为。在价格十分透明的线上竞争情形下,高低定价必须考虑对手的反应;当价格匹配与频繁调价现象并存时,就需要探究这一动态过程背后的协调机制,且这种协调机制应具有不完全性并带来价格离散。近年来少数"头部电商"占有较大市场份额的"中心+外围"(core+fringe)结构逐渐形成,头部电商间的强弱关系也出现了分化,非对称竞争所产生的差异化定价与价格波动、价格匹配等行为进一步交织。线上价格的复杂特征究竟是电商怎样的行为动机所带来的,其经济结果又如何?

本文以高低定价能够实现价格歧视为切入点 将"低价匹配策略"作为电商间隐性价格串谋的协调实现机制 围绕具有非对称市场条件的寡头竞争情境构建静态与序贯博弈模型 ,分别考察同时销售特定商品的电商在高、低两个价位的竞争策略及低价匹配策略的作用 ,在此基础上 ,分析其竞争效应 ,推断强势、弱势竞争者进入或退出市场产生的不同影响。理论分析表明:(1)由于存在急需型顾客 , 电商总是可以通过高低定价实现价格歧视。(2)尽管不同市场条件设定、不同博弈情

^{*} 张昊, 中国社会科学院财经战略研究院, 邮政编码: 100006, 电子信箱: cjy - zhanghao@ cass. org. cn。本文为国家社会科学基金项目"发挥居民消费推动传统产业转型升级的基础性作用研究"(20BJY101)的阶段性成果。作者感谢参与本文多次研讨的专家及匿名审稿专家的宝贵建议, 当然文责自负。

形下的结果存在差别。在高、低两个价位中,存在低价匹配策略时的均衡价格总是相对更高,且强势、弱势电商的利润都会增加。(3)存在低价匹配策略的均衡中,具有相对优势的电商在高、低两个价位的定价水平总是低于独家经营情形,而弱势电商的定价可能相同甚至更高。本文利用2020年8月至2022年1月在京东、苏宁按月度连续采集的四大类家电数据,在产品型号层次利用销售价格与市场进入、退出带来的竞争关系变化进行经验分析,结果验证了电商高低定价与价格匹配行为的特征以及销售竞争影响双方不同价位定价的理论推断。

本文为把握非对称情境下的线上市场竞争提供了一个逻辑: 当寡头电商因市场条件非对称而具有不同的最优定价 继而在降价意愿上存在差异时 ,其中一方可以采取 "主动"的低价匹配策略使另一方的降价行为变得无利可图 ,以此协调相互行动并抬高市场价格。由于低价匹配可以由商家基于竞品价格监测的定价算法自动实现 ,这意味着线上市场比传统市场更低的价格搜寻成本 ,调价成本在可能激化竞争的同时 ,也给参与者提供了传递约束信号、影响对方行为的新途径 ,从而为彼此协调与隐性合谋创造条件。本文分析结果还说明 ,只要存在具有相对弱势的竞争者 ,优势电商的定价便会明显低于其独家销售的情形 ,差距大小还与弱势电商市场状况的不利程度正相关。竞争规制的关键在于避免企业凭借自身实力形成用户锁定而排除竞争。

后文安排如下: 第二部分回顾已有文献,说明本文可能的创新之处; 第三部分构建理论模型,考察高低定价及低价匹配背后的电商间策略互动,并进行竞争效应分析; 第四部分说明数据来源与处理情况; 第五部分采用经验分析验证理论假说; 最后总结全文并提出政策建议。

二、研究回顾

从经营行为与竞争策略的角度看 高低定价与价格匹配都是电商追求自身利润最大化的结果。高低定价可以被看作是一种跨期动态定价 .商家能够利用时间维度实现价格歧视。围绕传统线下市场的分析认为 ,以短时低价促销实现价格歧视需要卖家的市场势力和消费者不同的保留效用作为条件(Stokey ,1979) 。考虑消费者在等待耐心和忠诚度等方面的差别 .Sobel(1984) 指出商家会在多数时候给出高价并在短时内采取针对低保留效用顾客的降价行为 ,且商家间的降价将表现出同步性。在低菜单成本的线上情境下 ,电商可以通过更频繁的高低调价 ,利用顾客的损失厌恶特征达到促销效果; 而对于未能观察到完整历史价格序列的顾客 ,策略性地安排高、低价出现的天数也能改变其参考价格(张昊和冯永晟 2022) 。线上顾客可能因为价格观测及购买时点不同而形成信息差异并产生不同的参考价格 ,商家则可据此通过循环式的高低定价实现价格歧视(Wang , 2016) 。但随着 "比价网站"等一次性提供特定产品历史价格的工具被不断应用(Gorodnichenko & Talavera , 2017) .信息差异对参考价格的影响应不断减小 ,而顾客本身异质性的作用更加凸显。本文将在区分消费者群体的基础上 着重从顾客的角度出发考虑线上情境下高低定价作为价格歧视手段的作用基础 ,这更加适用于价格信息获取成本不断降低的线上市场情境。

对于不同商家给出相同价格的现象 最直接的认识是"价格合谋"(price collusion)。合谋成立需要条件 其中价格透明度是一个重要方面(Green & Porter , 1984) 从而背离合谋的定价行为能够被对方观察到并触发惩罚措施(Abreu et al. , 1986; Friedman & Samuelson ,1990)。基于典型案例 ,Genesove & Mullin(2001) 发现在对手降价后匹配其较低价格是有效的惩罚机制。理论分析也证实 连续经营情境下这种做法能够带来隐性合谋均衡(Lu & Wright 2010)。商家可能通过公开匹配对手低价 作出"低价匹配承诺"来促成合谋(Hay ,1982)。低价匹配承诺在一些情境下可能具有反竞争性(Zhang ,1995; Liu ,2013) 其中包括帮助商家在忠诚顾客与非忠诚顾客之间实现价格歧视(Belton ,1987)。若低价匹配承诺需要顾客提供存在更低价格的证明来触发 则对市场中各个卖家售价了解有限的顾客便可能面临价格歧视(Png & Hirshleifer ,1987)。进一步考虑顾客要求商家履行低价匹配承诺的"举证成本" Hviid & Shaffer

(1999) 围绕非对称双寡头的分析结果表明商家的低价匹配承诺未必会达到合谋的效果。在这些研究中,低价匹配被作为一种惩罚策略或公开承诺 而与卖家间给出相同价格的实际结果相区别 此时双方均衡价格可能不一致。可见 这一思路能够适应价格离散与价格匹配并存情形下的竞争行为分析。

目前 将价格匹配与动态价格调整相结合的研究较为缺乏。低价匹配策略可以解释通过降价达到一致价格的现象,但难以说明现实中与高低定价相伴随的由涨价实现的价格匹配(详见后文)。对此 "Png & Hirshleifer(1987)的分析或许具有启示意义: 采取低价匹配承诺的商家间会在不同时点给出差异化价格折扣 "形成混合策略均衡。并且价格匹配策略的均衡结果还会因卖家间的非对称性而产生变化(Hviid & Shaffer "1999)。如果考虑线上市场价格更加透明的特点 "基于部分顾客只能获知有限信息的价格歧视会变得难以实现;但与此同时 ,商家间获知对手价格并进行低价匹配更加方便。因此 本文将主要围绕非对称寡头竞争情境,通过对高低定价与低价匹配策略的综合考察来理解线上市场价格特征,进而对其中的价格歧视、动态协调及竞争效应进行分析。

相对于已有研究 本文可能的边际贡献在以下方面: 一是从动态定价中的价格歧视与相互协调的角度对线上市场高低定价与价格匹配相复合的特征进行解释。为此 ,本文通过区分急需型与非急需型顾客来说明电商采取高低定价的行为动机 ,并将急需型顾客划分为忠诚与非忠诚顾客以考察围绕高价位的竞争性均衡。这更加贴近现实中信息较充分的线上消费市场特征。二是分别考察非对称电商在高低两个价位的博弈均衡结果 ,拓展了对价格匹配行为结果的分析。本文将 Hviid & Shaffer(1999) 围绕普通消费者的非对称静态博弈模型拓展至争夺急需型消费者的情形 ,同时增加了对序贯博弈均衡条件的求解。在此基础上分析竞争效应 ,发现了强势或弱势电商进出市场后价格变化的不同表现 ,弱势电商的市场参与有助于维持市场竞争效应的分析结果也具有现实含义。三是使用了专门采集的电商家电类产品经营行为数据集 ,在产品层面考察市场进入退出对销售价格的非对称影响。现有文献大多按特征参数或经营主体对样本进行大类划分 ,聚焦到具体商品层次的微观竞争效应考察不充分(孙震等 2021)。

三、理论模型

理论模型将围绕独家销售情形和双寡头博弈情形展开。从市场结构看,目前排名靠前的2—3个"头部电商"已经占有了整个市场的绝大部分,典型消费通常也只在3个以下电商进行消费(孙震等 2021)。其他"外围"电商没有主导市场定价的能力,而通常只作为"价格接受者"(pricetaker),因而问题的关键在于少数头部电商间的竞争行为。

(一)独家销售情形

假设市场中只有电商企业 i 销售某种特定产品,价格为 p_i ,成本固定为 $c(p_i>c>0)$ 。需要强调的是,这里的定价由电商作出,只有自营商品才符合这一情形。市场中的顾客分为两类: 一是急需型消费者(U) 愿意支付任意小于其保留效用的价格以立即获得商品。简化起见,假定此类顾客的保留效应相同并记作 $r_i(>0)$ 这部分顾客的需求量为 $d^{\mathrm{U}}(p_i \leqslant r_i)$ 或 $0(p_i>r_i)$ 。二是一般的消费者(W) 愿意等待观望一段时间(T) 并在出现低价时购买,其需求量满足 $q_i^{\mathrm{w}}=\alpha_i^{\mathrm{w}}-\beta_i^{\mathrm{w}}\bullet p_i(\alpha_i^{\mathrm{w}}\beta_i^{\mathrm{w}}>0$ 为常数)。① 直观地 电商以 T 为周期,在一个时点将价格降至满足(1)式的 $p_i^{\mathrm{w}}(< r_i)$,其余时点设置能够让急需型顾客接受的最高价格 r_i ,则可获得高低定价时最优利润。② 而不采用高低定价

① 本文还考虑了非急需型顾客愿意等待的时间存在异质性,耐心较差的顾客可能流失的情况。此时电商将存在最优的调价频率实现平衡,且 p_i^m 与 r_i 的差距越小,调价频率越高(限于篇幅、略去、备索)。

② 当 $\hat{p}_i^m > p_i^m > r_i$ 时,电商利润最大化的最优定价高于消费者保留效用,此时不采取高低定价策略。后文将主要考虑保留效用 r_i 较大,电商最优化定价不超过保留效用 r_i 的情形。

时,可以求得利润最大化的最优定价为 $\hat{p}_i^m = (\alpha_i^m + d^U)/2\beta_i^m + c/2$ 。通过比较不难发现,采用高低定价时针对两类顾客的销售利润均严格增加。其经济含义在于,垄断电商可以通过高低定价实现对绝大部分(1-1/T) 急需型顾客的完全价格歧视,且不影响其在普通顾客群体中获得最优利润。现实中,电商还可以对 $W \setminus U$ 两个市场分别做进一步细分并给出中间价位,但其行为机制与上述分析是一致的,故后文将主要围绕高、低两个价格进行考察。

$$\underline{p_i^m} = \operatorname{argmax} \left[\boldsymbol{\pi_i^w} (p_i^m) \right] = \operatorname{argmax} \left[(p_i^m - c) (\alpha_i^m - \beta_i^m \cdot p_i^m) \right] = \alpha_i^m / 2\beta_i^m + c/2 \quad (1)$$

(二)非对称双寡头竞争情形

接下来考虑双寡头竞争情形下具有非对称市场地位的电商定价策略。假定两家电商企业 $A \times B$ 同时向市场提供特定品种的商品,其成本均为 c。

1. 围绕一般顾客群体(W)的定价策略。由于电商经营活动带给顾客的不仅是产品本身,还有物流配送、售后维修等多方面内容。因而两家电商提供的"整体产品"仍可被看作是具有替代性的差异品(因此这里的讨论也适用于差异化竞争的情况)。假定 $A \setminus B$ 面临 W 群体的需求($q_A^w \mid q_B^w > 0$)满足:

$$q_i^w = \alpha_i - \beta_i \cdot p_i + \gamma_i \cdot p_{-i} (i = A, B; -i 表示不同于 i 的另一方)$$
 (2)

其中 $\alpha_i \ \beta_i \ \gamma_i \ge 0$,且 $\beta_i > \gamma_i$ 。 (2) 式采用线性需求函数,可以使分析过程更直观,均衡结果更易于比较。① 假定 $\beta_i > \gamma_i$ 是为了保证两家电商的利润 $\pi_A \ \pi_B$ 在 $p_A = p_B$ 时存在唯一最优解。不失一般性,设定电商 A 比电商 B 更具市场优势,体现为相同条件下能够获得更大销量份额。结合(2)式,本文将这一关系假定为如下参数取值条件:

$$\frac{\alpha_B}{\alpha_A} < \min(\frac{2\beta_B - \gamma_B}{2\beta_A - \gamma_A} \frac{\beta_B - \gamma_B}{\beta_A - \gamma_A}) , \exists \gamma_A/\beta_A > \gamma_B/\beta_B$$
 (3)

先考虑完全信息静态博弈: 企业 $A \setminus B$ 同时决定是否采取当自身价格高于对方时降至与对方相同水平的"低价匹配策略"(记作 $LPM_A \setminus LPM_B$ 取值为"M"表示采取,"nM"表示不采取),并给出自己符合低价匹配策略的定价。② 其中,低价匹配既可以在获知对方价格后瞬间完成,也可以在前述高低定价周期(T) 内择日实现 这不影响 W 群体的实际购买行为。由此 企业 i 的决策可表示为 $S_i = (LPM_i \cdot p_i)$ (后文若无特别说明,当 $LPM_i = M$ 时 p_i 指符合低价匹配策略要求且可能经过匹配调整的实际出价,而非原始出价)。在博弈过程中 若采取低价匹配策略的一方将原本与对手一致的价格调至高于对方水平,则意味着偏离低价匹配策略。同时,降价到与对方相同水平的做法与从"不采取低价匹配策略"偏离到"采取低价匹配策略"是等价的。若一方降价至与对手相同水平无法带来好处,则可以认为这一方既没有改变价格的动机,也没有偏离低价匹配策略选择的动机。

在上述设定下,有以下命题成立(限于篇幅略去证明过程,备索,下同):

命题 1: 电商 A、B 围绕 W 顾客的静态博弈纳什均衡如下:

当 P^{NA}≤P^{MB}时 純策略纳什均衡解不唯一 包括:

$$(1) S_A = (M p_A) \ S_B = (M p_B) \ \square P^{NA} \le p_A = p_B \le P^{MB};$$

(2)
$$S_A = (M p_A) S_B = (nM p_B)$$
 $B_A = p_B = P^{NA}$;

(3)
$$S_A = (nM p_A) S_B = (nM 或 M p_B) 且 (p_A p_B) = (p_A^{BT} p_B^{BT});$$

当 $P^{\text{NA}} > P^{\text{MB}}$ 时 纳什均衡解为 $S_{\text{A}} = (nM \ p_{\text{A}}) \ S_{\text{B}} = (nM \ \text{或} \ M \ p_{\text{B}}) \ \mu(p_{\text{A}} \ p_{\text{B}}) = (p_{\text{A}}^{BT} \ p_{\text{B}}^{BT})$ 。

其中 (p_A^{BT}, p_B^{BT}) 为 A、B 最优反应函数 (BR^i) 曲线的交点 即伯川德 – 纳什均衡价格:

① 作为 Hviid & Shaffer(1999) 模型设定的一种特殊形式 本文主要结论还可推广至 $\partial \pi_A/\partial p_A \partial p_B \geqslant 0$ (保证最优反应定价向上倾斜) 以及 $\partial \pi_i/\partial^2 p_i + \partial \pi_i/\partial^2 p_{-i} + 2\partial \pi_i/\partial p_i \partial p_{-i} < 0$ (保证 $\pi_A \setminus \pi_B$ 在 $p_A = p_B$ 的条件下有唯一最优解) 时的一般形式。

② 在线上市场,一方总是不难通过大样本价格监测等途径了解对手行为方式,包括对方是否采取低价匹配策略等。

$$\begin{cases} p_A^{BT} = \left[\left(2\alpha_A \beta_B + \alpha_B \gamma_A \right) + \left(2\beta_A \beta_B + \gamma_A \beta_B \right) \cdot c \right] / \left(4\beta_A \beta_B - \gamma_A \gamma_B \right) \\ p_B^{BT} = \left[\left(2\alpha_B \beta_A + \alpha_A \gamma_B \right) + \left(2\beta_A \beta_B + \gamma_B \beta_A \right) \cdot c \right] / \left(4\beta_A \beta_B - \gamma_A \gamma_B \right) \end{cases}$$

$$(4)$$

根据(3) 式非对称性关系设定 ,当 $p_{\rm B}$ > (或 <) $P^{\rm NA}$ 时 ,A 的最优定价 $BR^{\rm A}(p_{\rm B})$ < (或 >) $p_{\rm B}$; 当 $p_{\rm A}$ > (或 <) $P^{\rm NB}$ 时 ,B 的最优反应定价 $BR^{\rm B}(p_{\rm A})$ < (或 >) $p_{\rm A}$ 。

 P^{Ni} 为电商 i 的最优反应函数在附加 $p_A = p_B$ 的条件时 p_A 与 p_B 的共同取值:

$$P^{Ni} = (\alpha_i + \beta_i \cdot c) / (2\beta_i - \gamma_i)$$
 (5)

 P^{Mi} 为电商 i 在附加 $p_A = p_B$ 条件下最大化自身利润得到的 p_A 与 p_B 的共同取值:

$$P^{Mi} = \alpha_i / 2(\beta_i - \gamma_i) + c/2 \tag{6}$$

在满足(3) 式的情况下 有 $p_A^{BT} > p_B^{BT} \backslash P^{NA} > P^{NB} \backslash P^{MA} > P^{MB}$ 成立 这也是电商 A 相对于电商 B 具有市场优势的表现。此外 $p_i^{BT} < P^{Ni} < P^{Mi}$ (i = A B) (不等式关系均经 Mathematica13.0 验算 ,下同)。

可以看到,当 $P^{NA} > P^{MB}$ 时,均衡结果下双方策略组合决定的均衡利润是唯一的;而当 $P^{NA} \leq P^{MB}$ 时,不同的纳什均衡会给双方带来不同的利润。其中,双方都采取低价匹配策略时可能的均衡利润(记作(π_A^H, π_B^H))总是优于仅A采取低价匹配策略时的均衡利润(记作(π_A^H, π_B^H)),而A不采取低价匹配策略时的均衡利润最少(记作(π_A^L, π_B^L))。不过,静态博弈中双方并不一定选择都采取低价匹配策略的"帕累托上策均衡"(pareto-dominated equilibrium)。本文将包含上述纳什均衡解的决策空间与利润情况绘制成图1,并补充了部分空缺的非均衡策略(对应的利润无下划线)。其中,双方策略中的价格为原始出价,实际出价在对应的收益栏中用"[]"标出。可以看到,对于A和B而言,选择(nM, p_i^{BT})都更安全,因为至少可以保证自身利润不低于 π_i^L ,由此达到的是"风险上策均衡"(risk-dominated equilibrium),且单次静态博弈中双方无法通过事先沟通改变这一点。①

	,				В		
			(M	, p _B)	(M 或 nM p _B)	(nM, p_B)	其他取值
				$P^{\text{NA}} < p_{\text{B}} < P^{\text{MB}}$	$p_{\rm B} = P^{\rm NA}$	$p_{\rm B} = p_B^{BT}$	
		$p_{\mathrm{A}} \geqslant P^{\mathrm{MB}}$	$egin{aligned} \left[P^{ ext{MB}}\;,P^{ ext{MB}} ight]\ \left(oldsymbol{\pi}_{A}^{H}\;oldsymbol{\pi}_{B}^{H} ight) \end{aligned}$	$egin{aligned} egin{bmatrix} egin{bmatrix} egin{split} egin{spli$	$egin{array}{c} \left[p^{^{\mathrm{NA}}},p^{^{\mathrm{NA}}} ight] \ \left(\pi_{_A}^{^{M}},\pi_{_B}^{^{M}} ight) \end{array}$	$egin{aligned} \left[p_{B}^{BT}\;p_{B}^{BT}\; ight]\ \left(\;\pi_{ ext{A}}$	略
A	$(M, p_{\rm A})$	$P^{\text{NA}} < p_{\text{A}}$ $< P^{\text{MB}}$	$egin{aligned} \left[p_{\mathrm{A}},p_{\mathrm{A}} ight] \ \left(\pi_{A}^{M}<\pi_{\mathrm{A}}<\pi_{A}^{H},\pi_{A}^{H} ight] \ \pi_{B}^{M}<\pi_{\mathrm{B}}<\pi_{B}^{H} \end{aligned}$	$ \begin{bmatrix} \min\{p_{A}, p_{B}\}, \\ \min\{p_{A}, p_{B}\} \end{bmatrix} $ $ (\pi_{A}^{M} < \pi_{A} < \pi_{A}^{H}, \\ \pi_{B}^{M} < \pi_{B} < \pi_{B}^{H}) $	$egin{array}{c} [p^{ ext{NA}} \; , p^{ ext{NA}}] \ (\; m{\pi}_{\scriptscriptstyle A}^{\scriptscriptstyle M} \; m{\pi}_{\scriptscriptstyle B}^{\scriptscriptstyle M}) \end{array}$	$egin{aligned} \left[p_{B}^{BT} \; p_{B}^{BT} ight] \ (\; \pi_{ ext{A}} < \pi_{A}^{L} \; \pi_{ ext{B}}) \end{aligned}$	略
		$p_{\rm A} = P^{\rm NA}$	$[p^{\mathrm{NA}}, p^{\mathrm{NA}}]$ (π_A^M, π_B^M)	$[p^{\mathrm{NA}}, p^{\mathrm{NA}}]$ (π_A^M, π_B^M)	$[p^{\mathrm{NA}},p^{\mathrm{NA}}]$ (π_A^M,π_B^M)	$egin{aligned} \left[p_B^{BT} \;\; p_B^{BT} \; ight] \ \left(\; oldsymbol{\pi}_{ ext{A}} < oldsymbol{\pi}_{ ext{A}}^{L} \;\; oldsymbol{\pi}_{ ext{B}} ight) \end{aligned}$	略
		其他取值	略	略	略	略	略
	(nM, p_A)	$p_{\rm A} = p_{\rm A}^{BT}$		$\begin{bmatrix} p_A^{BT} & p_A^{BT} \end{bmatrix}$ $(\pi_A & \pi_B < \pi_B^L)$		$egin{array}{c} [p_A^{BT} & p_B^{BT}] \ (m{\pi}_A^L & m{\pi}_B^L) \end{array}$	略
		其他取值	略	略	略	略	略

图 1 围绕 W 顾客的静态博弈均衡 $(P^{NA} \leq P^{MB})$

① 现实中,常常是一方先经营一个型号的产品,然后另一方也开始经营同型号产品。当一方进入时会综合多种因素给出定价,在位一方监测到另一方开始销售同款产品后,有可能会调整自身价格。这一过程将双方带入到了均衡状态。由此,后文将在竞争效应与经验分析部分对进入、退出给价格水平的影响进行考察。

接下来考虑完全信息的序贯决策博弈情形: 先动者企业 i 先决定是否采取低价匹配策略($LPM_i = M$ 或 nM) 并给出定价(p_i) ,后动者企业 -i 随后给出自己的定价(p_{-i}) 。由于后动者 -i 已经先观察到了企业 i 的价格,因而无所谓是否采取低价匹配策略,只需考虑其实际出价即可。若先动者 i 采取了低价匹配策略,则当 $p_{-i} < p_i$ 时 p_i 自动降至 $p_i = p_{-i}$ 。可以证明,有以下命题成立:

命题 2: 电商 $A \setminus B$ 围绕 W 顾客进行序贯博弈,不论哪一方先动,都分别存在一个区间使 $S_i = (M p^{MB}) \setminus S_{-i} = p^{MB}$ 为均衡解。其中 A 为先动者且 $P^{NA} \leq P^{MB}$ 时,该策略总是均衡解。

总的来看,无论是静态博弈还是序贯博弈,若 $P^{\text{NA}} \leq P^{\text{MB}}$ 则处于强势地位的电商 A 总是能够通过低价匹配策略获得更高的利润,且双方达到博弈均衡时各自给出的市场价格也更高;若 $P^{\text{NA}} > P^{\text{MB}}$,则动态博弈中 A 、B 双方都有采取低价匹配策略的可能。其经济学直觉在于,价格竞争中的一方可以利用低价匹配策略,使另一方认识到降价行为是无利可图的,从而避免后者采取降价行为。这是低价匹配策略最终使双方在均衡状态一致给出较高价格的核心机制。并且从(略去)证明过程来看,静态博弈中的弱势一方和序贯博弈中的后动一方,降价意愿更强。这一结果不同于对称型伯川德竞争中双方持续降价至边际成本的情形,因为双方拥有低价匹配策略这一协调机制,也与合作情形下商定最优一致价格甚至事后再分配剩余的做法有明显区别,且相对于重复博弈中复杂而不易被观察到的各种惩罚措施(Friedman & Samuelson,1990),低价匹配是直观且易于操作的。甚至可以推断,"购物节"期间两家电商间会存在较明显的价格匹配现象,因为这期间主要针对的恰恰是非急需型顾客。此外还可注意到,静态博弈中存在低价匹配策略时的均衡价格上限(P^{MB})是由弱势电商的市场条件决定的,体现了弱势一方在市场结构中的意义。

2. 围绕急需型顾客群体(U) 的定价策略。虽然急需型顾客愿意以不高于其保留效用的价格购买商品,但若考虑简单的价格博弈,那么双方仍可能使价格不断降低直至逼近边际成本以争夺市场,这与实际情况显然不符。事实上,线上市场也存在转换成本及忠诚顾客(Hviid & Shaffer , 1999; 孙震等 2021),并会由此形成降价下限。将急需型顾客进一步分成两类: 第一类是只从其中一家购买的忠诚顾客(U1),第二类则在两家间根据价格高低选择购买(U2)。 两家电商的急需型忠诚顾客数量相同,均为 $d^{\rm U1}(>0)$ 在两家电商间进行选择的急需型顾客总量为 $d^{\rm U2}(>0)$ 。 两家电商若出价相同,则可分别获得 $d^{\rm U2}$ 中 1/2 的顾客。仍假定市场中新的保留效用一致,记作 $r_{\rm AB}$,且处于垄断情形下双方顾客保留效用 $r_{\rm A} > r_{\rm B} > 0$ 。考虑完全信息静态博弈,则有以下命题成立:

命题 3: 电商 $A \setminus B$ 围绕 $U1 \setminus U2$ 顾客的博弈行为: 得到的纳什均衡解不唯一 ,其解集由满足以下条件的策略组合构成: $S_A = (M, p_A) \setminus S_R = (M, p_B)$,且 $P^L \leq p_A = p_B \leq r_{AB}$ 。

其中 P^{L} 由(7) 式给出 ,为双方均采取低价匹配策略时电商 i 在 d^{U2} 顾客市场的最低售价或降价下限。当价格降至 P^{L} 水平以下时 ,电商 i 将放弃 d^{U2} /2 的顾客并将价格定为只针对 d^{U1} 市场时的最优定价 ,即 r_{AB} 。

$$p^{L} = (2r_{AB} \cdot d^{U1} + c \cdot d^{U2}) / (2d^{U1} + d^{U2}) \tag{7}$$

接着考虑序贯博弈情形,行为设定与前述针对 W 顾客市场时相同,先动一方(i) 若不采取低价匹配策略且出价高于 P^{L} 则另一方(-i) 将给出 $P_{-i} < P_i$ 来获取整个 d^{U2} 市场。为避免这一点,先动方总是会采取低价匹配策略,并给出 $P_i = r_{\text{AB}}$ 以获取最大利润。因此 不难得出以下命题成立:

命题 4: 电商 $A \setminus B$ 围绕 U 顾客进行序贯博弈 ,不论哪一方先动 ,均衡解总是存在于 $S_i = (M, r_{AB}) \setminus S_{-i} = r_{AB}$ 。

总的来看 对急需型顾客而言 静态博弈中两家电商同时给出低价匹配策略时可获得更高的均

衡价格与利润水平; ①而序贯博弈中 ,两家电商必然都会给出低价匹配策略以避免 "后动优势"。

3. 综合考虑整个市场的定价策略。上述分析说明 电商在 $W \times U$ 两大类消费者市场中的最优定价策略是有区别的。因而 在竞争情形下 电商仍有可能采取高低定价的办法来获取更大利润 ,这取决于博弈中不同均衡状态下的价格关系。表 1 对此进行了汇总 ,其中 p^F 为针对 W 市场的序贯博弈中先动方 i 的一个出价 ,该出价能够使 i 在后动方按最优反应出价时实现利润最大化 ,即满足(8) 式。将各情形下 U 市场中均衡价格下限与 W 市场中均衡价格上限相比较 ,求解不等式关系 ,可以得出两家电商采取高低定价策略的条件 ,以及最高价和最低价(记作 $p_i^e \times p_i^e$) 的取值或取值范围 ,本文将其总结为命题 5 和命题 6 。

$$p^{Fi} = [(2\alpha_{i}\beta_{-i} + \alpha_{-i}\gamma_{i}) + c \cdot (2\beta_{i}\beta_{-i} + \beta_{-i}\gamma_{i} - \gamma_{i}\gamma_{-i})]/(4\beta_{i}\beta_{-i} - 2\gamma_{i}\gamma_{-i})$$
 (8)
表 1

	X+1 ←=		静え	。 「博弈	序贯博弈		
	独家 销售	取值关系	低价匹配策略	均衡结果	先动者及其 低价匹配策略	均衡结果	
较高定价	$\bar{p}_i^m = r_i$,	A、B 同时采取	$P^{\mathrm{L}} \leqslant p_{\mathrm{A}} = p_{\mathrm{B}} \leqslant r_{\mathrm{AB}}$	A 或 B 采取	n - n - r	
(针对 U)	$p_i - r_i$,	其他情形	无纯策略均衡	A以D未取	$p_{\rm A} = p_{\rm B} = r_{\rm AB}$	
		A、B 同时采取		$P^{\text{NA}} \leqslant p_{\text{A}} = p_{\text{B}} \leqslant P^{\text{MB}}$	A 采取	$p_{\rm A} = p_{\rm B} = p^{\rm MB}$	
		$P^{\text{NA}} \leqslant P^{\text{MB}}$	仅 A 采取	$p_{\rm A} = p_{\rm B} = P^{\rm NA}$	①B 采取	$p_{\rm A} = p_{\rm B} = p^{\rm MB}$	
拉瓜宁人			仅 B 或都不采取	$(p_A^{BT} p_B^{BT})$	②B 不采取	$(p^{\text{FA}} \mathcal{B}R^{\text{B}}(p^{\text{FA}}))$	
较低定价 (针对 W)	\overline{p}_i^m				③A ,采取	$p_{\rm A} = p_{\rm B} = p^{\rm MB}$	
(1173 W)		$P^{\text{NA}} > P^{\text{MB}}$	仅 B 或都不采取	$\left(egin{array}{cc} p_A^{BT} & p_B^{BT} ight)$	④A 不采取	$(p^{FA} BR^B(p^{FA}))$	
		P >P	人口以即个不以	$(P_A P_B)$	①B 采取	$p_{\rm A} = p_{\rm B} = p^{\rm MB}$	
					②B 不采取	$(p_A^F BR^B(p_A^F))$	

注: i=A, B。 A 电商具有相对于 B 电商的市场优势。①与②、③、④为不同参数取值下的互斥结果。

命题 5:(1) 若满足以下条件 则静态博弈均衡下两家电商将对满足 $P^{^{\mathrm{NA}}} \leqslant P^{^{\mathrm{MB}}}$ 的产品采取高低定价行为:

(a) 电商 $A \setminus B$ 在 W 市场均采取低价匹配策略 且(9) 式成立。此时 $P^L \leq \bar{p}_i^c \leq r_{AB} \setminus P^{NA} \leq p_i^c \leq P^{MB}$ 。

$$\frac{d^{U1}}{d^{U2}} > \frac{c(\beta_B - \gamma_B) - \alpha_B}{2\left[\alpha_B + c(\beta_B - \gamma_B) - 2r_{AB}(\beta_B - \gamma_B)\right]}$$
(9)

(b) 仅电商 A 在 W 市场均采取低价匹配策略 ,且(10) 式成立。此时 $P^L \leqslant p_i^c \leqslant r_{AB} \cdot \underline{p}_i^c = P^{NA}$ 。

$$\frac{d^{U1}}{d^{U2}} > \frac{c(\beta_B - \gamma_B) - \alpha_B}{2\left[\alpha_B + c\beta_B - 2r_{AB}(\beta_B - \gamma_B)\right]}$$
(10)

(c) 电商 A 在 W 市场不采取低价匹配策略 ,且(11)式成立。此时 $P^L \leqslant \bar{p}^c_i \leqslant r_{AB} \cdot \underline{p}^c_i = P^{BT}_i$ 。

$$\frac{d^{U1}}{d^{U2}} > \frac{c(2\beta_A\beta_B - \beta_B\gamma_A - \gamma_A\gamma_B) - \alpha_A\beta_B - \alpha_B\gamma_A}{2[2\alpha_A\beta_B + \alpha_B\gamma_A - 2r_{AB}(2\beta_A\beta_B - \gamma_A\gamma_B)]}$$
(11)

(2) 若满足(11) 式 ,则静态博弈均衡下两家电商将对满足 $P^{\rm NA}>P^{\rm MB}$ 的产品采取高低定价行为。此时 $P^{\rm L}\leqslant\bar{p}_i^c\leqslant r_{{\rm AR}},p_i^c=P_i^{{\rm BT}}$ 。

命题 6: 若满足(2) 式的条件 则序贯博弈均衡下两家电商都将采取高低定价行为:

① 在至少一家电商不采取低价匹配策略的情况下,虽不存在纯策略纳什均衡,但存在混合策略均衡,并且双方期望利润最大化的混合策略均衡的分布函数为($Varian_{1}$ 980) : $F(p)_{1}=1-[(p_{AB}-p)_{1}\cdot d^{UI}_{1}]/[(p-c)_{2}\cdot d^{UI}_{2}]$ 。

$$r_{\rm AB} > \max \left\{ \frac{\alpha_B}{2(\beta_B - \gamma_B)} + \frac{c}{2} \frac{(2\alpha_A\beta_B + \alpha_B\gamma_A) + c \cdot (2\beta_A\beta_B + \beta_B\gamma_A - \gamma_A\gamma_B)}{4\beta_A\beta_B - 2\gamma_A\gamma_B} \right\} (12)$$

命题 5 意味着电商提高忠诚顾客比例有利于实现基于高低定价的价格歧视 ,这印证了其锁定市场的动机(孙震等 2021) 。并且 (9) —(11) 式也可变形为对保留效用(r_{AB}) 最低取值的要求(限于篇幅略去) ,即提高 r_{AB} 也有利于电商实现上述目标。序贯博弈情形下针对急需型顾客的博弈均衡价格总是在 r_{AB} 水平 ,故条件更宽松。综合前文分析 ,可以得到以下假说:

假说 1: 独家销售与存在销售竞争这两种情形中 均有商品存在高低定价现象。

假说 2: 在高低定价的较高、较低价位中 均有价格匹配现象存在。

这里还需考虑一个问题,处于竞争中的双方在高低价位间的调整可能是不同步的,在高低定价与低价匹配策略相结合的情况下,当一方在高价位与低价位之间调整时,另一方是否也会发生调整?直观地,在线上价格较为透明,且竞争参与者均拥有较强价格信息处理能力的情况下,对手的高低价格调整行为是易于观测的,可以认为电商间能够分辨彼此价格调整后针对的不同市场(W或U),这相当于延续了完全信息假定。先考虑一方由高价位调整至低价位的情形。不难理解,此时另一方即使没有采取低价匹配策略,也应当进行降价,否则将至少失去 U型顾客。再考虑一方由低价位调整至高价位的情形。这更接近于序贯博弈,即一方先将新的价格设定在较高水平($p_i = r_{AB}$)并实施低价匹配策略(M),另一方的合理选择已经由命题 4 给出,即也将价格定在这一水平。否则相当于给出较低出价($p_i < r_{AB}$) 在面临对手低价匹配策略的情况下,并不能使其获得更多的 U型顾客,同时还会减少利润。结合现实来看,这是由此类消费者的特点决定的。因为这些顾客可以等待前者重新将价格调至较低水平,除非前者的调价周期超过了顾客愿意等待的最长时间(T),这是与独家经营时实现高低定价的行为基础相一致的。① 由此可以得到以下推论:

推论 1: 电商间的一致价格既有可能通过一方涨价得到,也有可能通过一方降价得到。

上述结果体现了低信息成本、低菜单成本下的电商定价特点。在传统市场中,由于存在较高的信息成本。基于顾客申诉的低价匹配承诺可以帮助商家对无法掌握充分信息的顾客进行歧视性定价而不影响其在充分信息顾客中的利润(Png & Hirshleifer ,1987);但在线上市场中,消费者在不同卖家之间的比价更加容易,其实现机制已难以成立。此时,商家基于竞品价格监测与自动定价算法的"主动"低价匹配行为可以作为一种对竞争者行为的约束信号发挥作用:当一方给出低价匹配策略时,另一方会发现其降价行为已变得无利可图。同时,价格歧视也转向以顾客是否"急需"商品这一与信息充分性没有直接关系的方面,并以时间维度高低定价来实现。而电商要保证一定的调价频率以确保不损失非急需型顾客,低菜单成本又为其提供了实现条件。上述结论还可与行为经济学关于频繁调价影响顾客感知价值的动机相联系(张昊和冯永晟 2022),提高保留效用在本文中意味着抬高双方采取低价匹配策略时非急需型顾客市场均衡价格的上限。

(三)竞争效应分析

进一步考察销售竞争对产品价格的影响。这与电商低价匹配策略选择有关,且存在非对称性,故需要结合表 1 对独家销售和双寡头竞争情形下的各种均衡结果进行比较。先考虑针对急需型消费者 \mathbb{U} 的较高定价。在独家经营时,电商 i 的定价为各自顾客的保留效用 r_i 。存在竞争对手时,静态博弈中的均衡定价都处于 $[P^L, r_{AB}]$ 的区间,序贯博弈中的均衡定价为 r_{AB} 。此时,若 A 为在位电商 A 为新进入者,则由于 A A 为新进入者,则使均衡价格处于 A A 为在位电商 A 为新进入者,则 A 的价格变化是不确定的,即决于均衡价格与 A A 为

① 本文还考察了销售竞争使顾客变得不那么耐心的情况 此时电商的调价频率将相应提升 经验分析证实了这一点(限于篇幅略去 备索)。

的关系。市场退出时的变化也具有非对称性,即电商 A 的价格应严格上升,电商 B 的价格变化是不确定的。

再来看针对普通顾客 W 的较低定价。在独家经营时,两家电商都会采用利润最大化定价 p_i^m 。存在竞争对手时,静态博弈中的均衡价格均不超过 P^{MB} 。因此,竞争对手进入与退出市场所带来的价格影响将取决于 P^{MB} 与 p_i^m 之间的关系。理论上, P^{MB} 与 p_i^m 的关系是不确定的,但结合其经济含义,可以排除极端情况。由(1)和(6)两式知:

$$p_i^m - P^{MB} = \alpha_i^m / 2\beta_i^m - \alpha_R / 2(\beta_R - \gamma_R)$$
 (13)

 $\alpha_i^m/2\beta_i^m$ 与 $\alpha_i/2(\beta_i-\gamma_i)\equiv\alpha_i/2\beta_i^c$ 之间的关系反映的是电商面临的经营环境,因为 α 代表价格 趋近于 0 时的最大潜在市场规模 β 表明单位价格上涨所减少的顾客。可以合理推断 $\underline{p}_A^m>P^{\mathrm{MB}}$,因 为强势电商独家经营所面临的市场环境不可能比弱势电商面对竞争时还差。同时 \underline{p}_A^m 与 P^{MB} 的差距与弱势电商面临市场状况的不利程度正相关。序贯博弈中,A 的出价还可能是 P^{FA} 或 BR^A (P^{FB})。 BR^A (P^{FB}) < P^{FB} 故需要比较 P^{FA} 与 \underline{p}_A^m 之间的关系。考虑 B 进入市场时 A 所面临的市场环境会变差 即 $\alpha_A^m/2\beta_A^m>\alpha_A/2\beta_A^c$ 那么必然有 $p_A^m>P^{\mathrm{FA}}$ 即 A 的定价将严格下降。

当 A 进入市场时 B 的定价变化情况会有所不同。静态博弈中 ϱ_B^m 与均衡价格上限 P^{MB} 之间的关系取决于对手进入市场所带来的影响。由于 B 是弱势电商 故应同时考虑竞争效应和溢出效应两个方面。前者是指新进入的 A 通过竞争瓜分市场(α_B 减小),且有了替代品之后消费者对价格也会更加敏感(β_B^c 增大) ,故在位电商 B 的经营环境变差。溢出效应是指新进入者 A 通过自身的市场影响使更多的消费者了解到相应商品,而消费者可能在检索、比价后从在位电商 B 处购买,其结果是增加在位电商 B 潜在市场规模(α_B 增大),且消费者对产品的信心可能增强,对价格变化将更不敏感(β_B^c 减小)。进一步地,竞争效应和溢出效应的强弱对比主要取决于竞争对手之间的差距大小,但这难以先验地判断,故 ϱ_B^m 与 P^{MB} 之间的关系是不确定的。序贯博弈中,B 的出价还有可能是 P^{FB} 或 BR^B (P^{FA}) P^{FB} > BR^A (P^{FB})。即使考虑 B 的市场条件严格变差,即 $\alpha_B^m/2\beta_B^m$ > $\alpha_B/2\beta_B^c$ ϱ_B^m 与 P^{FB} 之间的关系也是不确定的。特别地,当参数取值满足前文条件与(B 14) 式时,有 B_B^m = B^{FB} 。由此可见,B 进入市场以后 B 的价格可能出现下降、不变或上升三种情况。

$$c = \frac{\alpha_B^m (2\beta_A \beta_B - \gamma_A \gamma_B) - \beta_B^m (2\alpha_B \beta_A + \alpha_A \gamma_B)}{\beta_A \beta_B^m \gamma_B}$$
(14)

综上,当 A 为在位电商 B 为新进入者时,不论双方采取低价匹配策略的情况如何,电商 A 的定价将严格下降。但静态博弈中,对 $P^{NA} \leq P^{MB}$ 的商品而言,A 采取低价匹配策略时取得均衡的降价幅度总是更小($P^{MB} > P^{NA} > p_A^{BT}$);序贯博弈中,若先动者采取低价匹配策略,A 的降价幅度也将更小($P^{MB} > P^{FA} > BR^A$ (P^{FB}))。而当 B 为在位电商,A 为新进入者时,静态博弈中,若电商 A 采取低价匹配策略,则对于 $P^{NA} \leq P^{MB}$ 的商品而言,电商 B 的价格变化方向是不确定的;若电商 A 不采取低价匹配策略,则其进入市场时电商 B 中所售商品不论 $P^{NA} \times P^{MB}$ 间关系如何,价格都将严格下降。序贯博弈中,先动方采取低价匹配策略时,B 的价格变化将是不确定的。一方退出市场时,另一方的价格变化也具有非对称性,可以通过类比市场进入的情形得到,这里不再赘述。由于强势电商进入市场可能引起弱势电商的产品售价上涨,故市场整体的价格变化与消费者福利也是不确定的。

可以看出 就 U、W 两个顾客群体而言,虽然电商的定价策略有所不同,但是在对手进入、退出市场时的价格变化却存在一定一致性。 故相应的价格关系既是总体表现,也会同时体现在高低定价商品的较高价格和较低价格中。 上述内容可以概括为以下假说:

假说 3: 对于强势电商而言 ,产品独家销售时的定价(包括总体价格水平和高低定价商品的较高价格与较低价格) 将高于存在销售竞争时的定价。而对于弱势电商而言 ,两种情形下的价格高 166

低关系是不确定的。

这意味着,对于原本定价较高的优势电商而言,假如有相对弱势的电商进入特定商品的销售市场,则达到均衡后该商品的市场价格将有所下降;而若相对强势的电商进入到原本弱势电商独家经营的特定商品市场,则该商品的价格变化方向将取决于双方竞争策略以及急需型顾客的保留效用、普通型顾客的市场反应等多方面因素。这与对称型市场中伯川德竞争迫使双方定价均趋于边际成本因此同时下降的情形不同,也与隐性合谋实现价格匹配时定价都将上升的情况存在明显区别。

(四)对顾客保留效用异质性的考虑

前文的分析对顾客保留效用做出了同质性假设,而现实中可能存在异质性。如果考虑这一点,分析结论会有一些变化。直接地,高低定价中的较高价位将不止一个。① 对于独家经营情形,可以认为顾客们的保留效用实际分布于一个小于 r_i 的区间。此时,电商高低定价行为不再表现为在两个价位之间的调整,而是能在多个较高价位停留,从而获取不同顾客的消费者剩余。对于寡头竞争情形,强势与弱势电商的急需型忠诚顾客在保留效用的分布上还可能存在差别,表现为强势电商的一部分顾客可能拥有高于 r_{AB} 的保留效用,而弱势电商的一部分顾客保留效用可能低于 r_{AB} 。在这种情况下,由于强势电商顾客的保留效用不会高于 r_{A} ,弱势电商顾客的保留效用也不会变得低于 r_{B} 放推论 2 仍然应当成立。不过,考虑到这一点之后,若双方在围绕 W 顾客的博弈中达到价格一致的均衡,则电商 A 采取高低定价的价格波动幅度可能大于电商 B。

间接地、针对较高价位的价格匹配过程也将是分步、多次的。由于急需型顾客出现的时点是随机的、寡头竞争情形下电商在较高价格之间的定价变化更多考虑对手的做法。此时、较高价位中的价格匹配有可能表现为在一定时期内双方逐步上调价格并形成一致价位,即推论1的表现将更突出。这是因为,通常具有最高保留效用的顾客数量总是较少,所以定价在该水平时可以获得的利润并不高,即使另一方认识到这是针对急需型顾客的较高定价,也可以将价格定在一个稍低的水平,通过扩大潜在顾客规模获得更高利润,先涨价一方的低价匹配策略也有可能因此失效。换句话说,当急需型顾客的保留效用存在异质性时,商家必须综合考虑抬价幅度与排除的潜在急需型顾客数量,从而保证低价匹配策略的作用效果,由此逐级提价将成为现实。当然,在每年定期举办线上"购物节",消费者逐渐形成集中购买习惯的情况下,电商能够更加方便地区分急需型与一般型顾客并实施高低定价,在涨价以获取更多消费者剩余方面的行为也将变得更加默契。

四、数据来源及处理

本文采用一个按月连续采集获得的家电产品型号及价格数据集进行经验分析。该数据集涵盖2020 年 8 月至 2022 年 1 月共一年半时间内京东、苏宁自营销售的冰箱、空调、洗衣机、电视机四大类商品。两家电商既符合本文讨论的"头部电商"特征,又在竞争中具有不对称性。②数据按自然月定期采集,先由电商分类展示页面获得完整的商品列表及销售网址,然后逐一获取自营商品的名称、型号等信息,用于电商之间的商品匹配及共同销售时段的确定。同时,在比价网站检索相应商品,获得采集时点向前追溯一年半或发售时的日度价格数据。采集到的数据先后经过了产品样本清洗、电商间型号匹配以及剔除异常值的过程(对数据选用的讨论、详细处理过程及描述统计略,备索)。

① 现实中 电商还有可能出于许多原因形成多个定价 这里只从保留效用不一致的角度提出了一种解释。

② 据中国电子信息产业发展研究院发布的《2021年中国家电市场报告》,京东以32.5%的市场份额位居第一,苏宁易购以16.3%的市场份额位列第二。

五、经验分析

(一) 高低定价行为与销售竞争的影响

先从总体上考察假说 1 中有关高低定价的判断。本文先统计特定产品在一周内的价格离差(最高与最低之差)及其相对于价格中位数的波幅(离差/中位数),然后计算整个样本期离差和波幅的均值,结果如表 2 所示。① 可以看到,离差和波幅均显著不为零,一周内的离差均值都在50元以上,有的甚至达到200元左右;波幅总体上都超过了1.5个百分点,最高达到3个百分点以上。两家电商比较,京东所售四大类家电的价格变化幅度总体上大于苏宁。本文还计算了整个一年半中的价格波动幅度,结果显示四类商品均达到10个百分点以上,最高的超过了20个百分点,如"全期间"栏所示。该结果可以与姜婷凤等(2020)使用年度数据得到的统计结果形成印证。

接着考察销售竞争对高低定价现象的影响。区分竞争对手是否同时销售同型号商品并进行计算分析 结果如表 3 所示。② 可以看到 ,无论竞争对手是否同时销售同型号产品 ,两家电商售价离差和波幅均显著不为零。值得注意的是 ,京东高低定价的波动幅度总是大于苏宁 ,体现了前述用户保留效用存在异质性的特点。

表 2 高低定价的现象分析: 价格离差与波幅均值

——————————————————————————————————————	÷Π		→ □ *		离差(元)			波幅(%)	
周期	产品	电商	产品数	均值	标准差	T值	均值	标准差	T 值
		全体	268364	142. 6	504. 6	146. 4 ***	2. 82	6. 06	241. 1 ***
	冰箱	京东	173803	192. 0	604. 3	132. 5 ***	3. 61	6. 73	223. 6 ***
		苏宁	94561	51. 9	196. 8	81. 1 ***	1. 36	4. 21	99. 3 ***
		全体	314882	74. 1	235. 2	176. 8 ***	1. 65	4. 13	224. 2 ***
	空调	京东	246325	79. 6	250. 3	157. 8 ***	1. 69	4. 14	202. 6 ***
周		苏宁	68557	54. 0	168. 8	83. 8 ***	1. 51	4. 07	97. 1 ***
周	洗衣机	全体	271247	94. 7	285. 1	173. 0 ***	2. 79	6. 43	226. 0 ***
		京东	182650	123. 2	329. 8	159. 7 ***	3. 48	7. 08	210. 1 ***
		苏宁	88597	36. 0	139. 5	76. 8 ***	1. 35	4. 48	89. 7 ***
		全体	228018	160. 7	745. 7	102. 9 ***	2. 75	6. 78	193. 7 ***
	电视机	京东	140682	221. 2	919. 1	90. 3 ***	3. 56	7. 84	170. 3 ***
		苏宁	87336	63. 4	275. 7	68. 0 ***	1. 45	4. 29	99. 9 ***
	冰箱		5781	657. 6	1072. 0	46. 6 ***	13. 37	12. 37	82. 2 ****
人 地區	空调		7731	444. 1	585. 4	66. 7 ***	9. 83	10. 15	85. 2 ***
全期间	洗衣机	全体	6636	431. 7	659. 3	53. 3 ***	13. 68	13. 26	84. 0 ***
	电视机		5741	1171. 2	2355. 9	37. 7 ***	18. 36	17. 15	81. 1 ***

注 "产品数"是指周期与产品组合得到的统计观测值个数,全期间统计时组合数等于产品个数,T 值是以"均值等于零"为原假设的 T 检验结果。 * 、 * 、 * * 分别表示在 10%、5%、1% 水平显著。

① 本文还以"月"为周期进行了统计分析,可以对结果形成进一步印证,限于篇幅略去,备索。

② 若无特殊说明 这里的"竞争对手"是指本文考虑的京东、苏宁中的另一电商。

表 3

竞争情况与高低定价

	对手销售	rh →	40 ~ **		离差(元)			波幅(%)			
产品	同型号	电商	组合数	均值	标准差	T值	均值	标准差	T 值		
	有销售	京东	49588	196. 58	551. 17	79. 4 ***	3. 84	6. 37	134. 2 ***		
`av 355		苏宁	35616	61. 33	217. 27	53. 3 ***	1.61	4. 46	68. 0 ***		
冰箱	工労生	京东	124215	190. 17	624. 30	107. 4 ***	3. 52	6. 87	180. 4 ***		
	无销售	苏宁	58945	46. 23	183. 13	61. 3 ***	1. 22	4. 04	73. 3 ***		
	七 坐#	京东	48590	106. 37	235. 50	99. 6 ***	2. 54	4. 83	116. 2 ***		
रूर १ म	有销售	苏宁	24442	90.00	208. 28	67. 6 ***	2. 43	4. 94	76. 7 ***		
空调	无销售	京东	197735	73. 08	253. 38	128. 2 ***	1.48	3. 93	167. 2 ***		
		苏宁	44115	34. 10	138. 34	51. 8 ***	1.00	3. 39	61. 8 ***		
		京东	51462	95. 43	268. 98	80. 5 ***	3. 27	6. 70	110. 6 ***		
> + +⊓	有销售	苏宁	29852	49. 95	155. 94	55. 3 ***	1. 92	5. 20	63. 8 ***		
洗衣机	工出生	京东	131188	134. 08	350. 16	138. 7 ***	3. 57	7. 22	179. 1 ***		
	无销售	苏宁	58745	28. 86	129. 75	53. 9 ***	1. 05	4. 03	63. 3 ***		
	左锐佳	京东	49862	254. 82	884. 87	64. 3 ***	3. 75	7. 57	110. 7 ***		
	有销售	苏宁	35144	91. 58	344. 62	49. 8 ***	1. 91	4. 71	76. 2 ***		
电视机	丁兴 佳	京东	90820	202. 73	936. 79	65. 2 ***	3. 46	7. 98	130. 6 ***		
	无销售	苏宁	52192	44. 36	215. 25	47. 1 ***	1. 14	3. 96	66. 0 ***		

注 "组合数"是指京东、苏宁同时销售的产品与时间周期形成的组合数 其余同表 2。

(二)价格匹配及达成一致价格的调价方向

接下来检验假说 2 中有关价格匹配的判断。价格匹配表现为电商之间在同一时点给出的价格相同或十分接近。本文在根据具体家电型号筛选出两家电商同时销售产品的基础上,分别按各周和整个一年半期间计算相互间价格相等天数的平均占比,结果如表 4 所示。① 可以看到,该占比均在 15% 以上 相当于每周至少有一天价格相同。并且 按不同周期计算的占比和标准差均较接近,表明价格匹配并不是集中在特定时段,而是一种常态化现象。本文还选取了"双十一""双十二""6·18""8·18"四个购物节,分别对购物节前一周(含当天)的情况进行了统计。其结果与以"周"为周期计算的结果均十分接近。这验证了前文的观点,即电商在购物节期间也会围绕非急需型顾客形成采取低价匹配策略的博弈均衡,从而避免了竞争的激化。

表 4

价格匹配现象分析

周期	产品	组合数	占比(%)	标准差	T值	产品	组合数	占比(%)	标准差	T 值
周		51961	29. 17	40. 05	166. 03 ***		58298	23. 59	37. 98	150 ***
全期间	冰箱	2458	34. 28	34. 07	49. 87 ***	洗衣机	3730	25. 31	32. 64	47. 36 ***
购物节		4955	27. 21	36. 39	52. 64 ***		5933	21. 68	34. 58	48. 29 ***
周		57165	17. 22	32. 16	127. 99 ***		56196	18. 42	33. 99	128. 43 ***
全期间	空调	2970	19. 18	24. 69	42. 33 ***	电视机	2598	16. 70	25. 01	34. 04 ***
		5134	17. 32	30. 33	40. 92 ***		5357	15. 80	30. 01	38. 52 ***

注 "组合数"是指京东、苏宁同时销售的产品与时间周期形成的组合数 ,T 值是以"占比等于零"为原假设的 T 检验结果。 * 、 * 、 * 、 * 分别表示在 10%、 * 、 * 、 * 水平显著。

① 在匹配过程中,一家电商销售的同款商品可能有不止一个自营销售链接。对于一个产品能够与同期竞争对手多个销售链接相对应的情形,本文分别计算了各个配对的价格差异,最后在整体层面以算术平均计算价格相等的天数占比。

表 5

基干高低定价情形的价格匹配现象

产品	周期		较高	高价		较低价				
广品		组合数	占比(%)	标准差	T值	组合数	占比(%)	标准差	T 值	
\-L **	周	5224	21. 61	37. 87	41. 24 ***	6759	30. 39	40. 91	61. 07 ***	
冰箱	全期间	590	21. 17	32. 77	15. 69 ***	842	28. 30	34. 72	23. 65 ***	
空调	周	7056	22. 26	37. 40	50. 00 ***	9113	22. 73	36. 73	59. 08 ***	
	全期间	905	24. 31	33. 01	22. 15 ***	1292	22. 72	30. 01	27. 21 ***	
洗衣机	周	4069	17. 45	35. 28	31. 55 ***	5658	27. 46	41. 15	50. 20 ***	
<i>ነ</i> ፒ 1X የሃ l	全期间	577	17. 20	31. 75	13. 01 ***	1033	29. 26	37. 07	25. 37 ***	
	周	7041	23. 09	38. 12	50. 83 ***	9888	23. 39	36. 89	63. 05 ***	
电视机	全期间	813	18. 68	29. 25	18. 21 ***	1218	19. 13	29. 64	22. 52 ***	

注: 同表 4。

然后分别考察高、低两个价位的价格匹配现象。以两家电商共同销售商品期间各自的中位数作为价格高低的区分标准(本文还以价格均值为标准进行了分析,结果相似,限于篇幅略去),筛选出两家电商设定价格同时处于较高或较低的"产品-日度"组合,并按周或全期间计算价格相同天数的占比。① 如表 5 所示 高、低两个价位中价格匹配现象均明显存在。其中 较高价位中价格相同的天数占比略低于较低价位中的占比,也可能是因为急需型顾客保留效用存在异质性所致。

为揭示调价行为的动态特征以进一步检验推论 1 本文分别统计了两家电商达到与对方一致价格时的调价方向。结果显示,对冰箱、空调、洗衣机、电视机四类产品而言,苏宁通过上调价格达到与对方相同水平的情形占比分别达到 66.5%、90.4%、49.5% 和 69.3%; 京东更高,依次分别为 89.9%、90.5%、90.4% 和 87.9%。这反映出适应不同急需型顾客保留效用的定价特征。

(三)销售竞争对价格的影响

为检验假说 3 中关于销售竞争与非对称电商产品售价的关系 本文构建了以下产品、时间双向固定效应回归模型:

$$\ln p_{ikt} = a_i \cdot Match_{kt} + \mu_k + \eta_t \tag{15}$$

其中 i 代表电商 k 代表特定型号的产品 t 代表时间(周度)。 p_{ikt} 为价格 ,按自然周分别统计最高价、最低价用于衡量高低定价中的较高、较低价位 ,价格中位数用于衡量整体价格水平(以价格均值来衡量的结果是相似的 ,限于篇幅略去)。 $Match_{kt}$ 为表征两家电商在 t 周是否同时销售产品 k 的虚拟变量(是=1、否=0) 回归系数 a_i 反映销售竞争对产品价格的影响。 μ_k 为产品虚拟变量 , η_t 为时间虚拟变量。在回归前 ,先对 p_{ikt} 求取对数。考虑本文数据存在异方差、组间相关以及序列相关的情况 ,使用 D – K 稳健标准误用于显著性推断(Driscoll & Kraay ,1998)。 能够在控制产品、时间双向固定效应的同时得到取值有所变化的 $Match_{kt}$ 变量并进行回归分析 ,得益于本文连续采集数据的做法。

考虑上述回归可能存在的偏误情况。一是前述急需型用户的保留效用可能具有异质性,因而在同期有对手销售同款商品时,强势电商高低定价中的较高价位比理论模型中给出的均衡结果 r_{AB} 更高。不难看出,这一现象会导致降价幅度减小,从而回归系数 a_A 的绝对值相应减小。二是存在其他产品或电商的差异化竞争的影响,使电商淡化对来自特定对手、特定产品的反应,即弱化 a_A 的

① 独家销售期间因定价机制不同而不具参照性 战在统计价格中位数或平均值的过程中没有纳入。两家电商高低价间转换不一定是同步的(可在前述一定周期T中完成) 故需要筛选出同时处于较高或较低价水平的样本。

表现。因此,对于这两种偏误,只要 a_A 显著小于零 就更能证明销售竞争能够使强势电商高低定价中的较高定价下降。此外,本文以最高价来衡量高低定价中的较高价位作为因变量,可以减少因部分产品急需型顾客市场中未形成纯策略博弈均衡给回归结果带来的影响。

分别以两家电商、四类产品求取对数以后的最低价、最高价、价格中位数作为被解释变量对 (15) 式进行回归, 共得到 24 个结果, 汇总如表 6 所示。可以看到, 对于京东而言, 竞争效应使其四大类商品的最高价、最低价和整体价格均显著下降; 对于苏宁而言, 回归结果中确实出现了不一致的现象, 与假说 3 中的判断相符。且由弱势电商在对手销售同型号产品时定价更高的情况看, 均衡状态中应当存在低价匹配策略。

接下来,本文区分考察竞争对手进入与退出的影响。根据数据中竞争对手是否同时销售同型号产品的先后变化顺序,不难区分进入和退出行为。回归结果如表7所示。就京东而言,通过显著性检验的 Match 回归系数仍然都为负值,而不显著的结果主要出现在对手退出时较高价位的反应。结合前述理论分析,这意味着用户保留效用在弱势电商退出后无法抬升到与强势电商独家销售情形相应的较高水平,结合现实中用户保留效用抬升总是较为困难,这是可以理解的。而就苏宁来说,具有显著性的 Match 回归系数结果方向有所不同,对手进入时苏宁较高价位抬升的现象较为一致,这符合前述关于存在低价匹配策略时的推断。苏宁较低价位的变化情况在不同情形间存在差异,也与理论分析得到多种可能的结果相一致。值得注意的是,这里的结果与曲创和刘龙(2021)关于排他性协议不会导致商品提高的结论存在不同。主要原因在于,本文使用了自营商品数据,产品与特定电商(平台)间的关联更紧密。

表6

竞争情况与价格水平的回归

	回归		京	东		苏宁				
<i>p</i>	结果	冰箱	空调	洗衣机	电视机	冰箱	空调	洗衣机	电视机	
	Match	-0.0094***	- 0. 0064 ***	-0.0192***	-0. 0247 ***	0. 0076 ***	0. 0245 ***	0. 0142 ***	-0.0026	
最低	Maicn	(0.0013)	(0.0012)	(0. 0019)	(0.0029)	(0. 0019)	(0. 0069)	(0.0025)	(0.0027)	
低 价	F值	1. 8e + 08 ***	9. 0e + 07 ***	4. 8e + 07 ***	2. 3e + 08 ***	1. 4e + 09 ***	2. 5e + 08 ***	3. 5e + 08 ***	5. 8e + 07 ***	
	组内 R ²	0. 0402	0. 0250	0. 0345	0. 0829	0. 0656	0. 1119	0. 0517	0. 1058	
	Match	- 0. 0030 ***	-0.0017	-0.0158***	-0.0151***	0. 0134 ***	0. 0372 ***	0. 0195 ***	0. 0050 **	
最高		(0.0008)	(0.0011)	(0.0018)	(0.0026)	(0.0027)	(0.0063)	(0.0026)	(0.0022)	
向价	F 值	2. 3e + 08 ***	8. 6e + 06 ***	7. 3e + 08 ***	3. 2e + 08 ***	4. 3e + 07 ***	3. 6e + 08 ***	7. 2e + 07 ***	1. 9e + 07 ***	
	组内 R ²	0. 0225	0. 0112	0. 0147	0. 0708	0. 0256	0. 1070	0. 0258	0. 0699	
_	Match	-0.0065 ***	- 0. 0042 ***	-0.0179***	- 0. 0209 ***	0. 0102 ***	0. 0336 ***	0. 0192 ***	0. 0026	
中	Maich	(0.0009)	(0.0011)	(0.0017)	(0.0027)	(0.0025)	(0.0068)	(0.0026)	(0.0024)	
位 数	F 值	4. 8e + 08 ***	1. $4e + 07****$	5. 0e + 08 ***	5.3e + 07****	1. 5e + 08 ***	1. 9e + 09 ***	1. 6e + 07 ***	2. 5e + 07 ***	
**	组内 R ²	0. 0207	0. 0154	0. 0160	0.0734	0. 0378	0. 1107	0. 0364	0. 0868	
	羊本量	144159	203493	151349	116623	77969	56500	73446	72111	

注: 表中回归结果均控制了产品固定效应、时间固定效应,括号内的数值为 D – K 稳健标准误 ,F 值为系数联合检验结果 ,*、**** 分别表示在 10%、5%、1% 的水平显著。

尽管电商采取低价匹配策略时竞争对市场整体价格的影响是不一定的,但本文可以利用两家电商较为完整的四类大家电自营产品数据,以合并样本考察整体影响方向。从结果来看,销售竞争倾向于降低高低定价中的较低价位,但会抬高较高价位;平均价格的表现存在产品间差异,冰箱类产品回归系数均不显著。空调类显著为正,洗衣机、电视机两类产品显著为负,这说明存在低价匹配策略的情况下,销售竞争降低市场价格的作用确实存在范围(限于篇幅略去具体结果。备索)。

表7 竞争情况与价格水平的回归结果(区分对手进入与退出)

	_	回归		仅对目	F进入		仅对手退出			
电商	p	结果	冰箱	空调	洗衣机	电视机	冰箱	空调	洗衣机	电视机
	最低价	Match	-0.0118***	- 0. 0047 **	- 0. 0224 ***	- 0. 0409 ***	- 0. 0166 ***	- 0. 0076 ***	- 0. 0169 ***	-0.0013
			(0.0016)	(0.0022)	(0. 0026)	(0.0045)	(0.0032)	(0.0019)	(0.0055)	(0.0086)
京东	最高价 Mate	M 1.	- 0. 0040 ***	-0.0024	- 0. 0171 ***	- 0. 0323 ***	- 0. 0090 ***	0.0030	-0.0133***	0. 0120
		Match	(0.0015)	(0.0019)	(0. 0026)	(0. 0036)	(0. 0024)	(0.0021)	(0. 0050)	(0.0078)
	样本量		121117	175076	127114	93247	108063	164578	112908	81283
	旦瓜丛	Match	0. 0199 ***	0. 0425 ***	0. 0250 ***	-0.0107***	- 0. 0126 ***	-0.0104*	-0.0038	0. 0026
	最低价	масн	(0.0018)	(0.0075)	(0. 0044)	(0. 0036)	(0.0023)	(0.0055)	(0.0025)	(0.0024)
苏宁	旦古仏	M l.	0. 0269 ***	0. 0561 ***	0. 0355 ***	0.0000	- 0. 0074 ***	0. 0003	-0.0053**	0. 0101 ***
	最高价	Match	(0.0028)	(0.0069)	(0. 0044)	(0.0034)	(0. 0024)	(0.0059)	(0. 0022)	(0.0021)
	样本	量	61972	45116	60853	52351	54673	35838	52475	52169

注: 同表 6。所有回归模型 F 值均显著 限于篇幅不再列出 F 值和组内 R^2 。

六、结论与启示

本文围绕非对称竞争情形构建博弈模型,从实现价格歧视与行为协调的角度对电商高低调价与价格匹配行为进行了解释。从竞争效应来看,相比独家经营情形,采取低价匹配策略的博弈均衡中,优势电商在高、低两个价位的定价水平将严格降低,而弱势电商的定价则有可能相同甚至更高。使用连续一年半在京东、苏宁两家电商按月度采集的四大类家电产品型号、价格及市场进入退出数据进行经验分析,验证了关于电商动态定价表现及其竞争效应的假说。本文结论有助于深化对电商定价行为及结果的认识。线上市场价格信息更透明,价格调整的菜单成本更低、速度更快。这既有可能使价格竞争更激烈,也有可能为商家之间的隐性合谋创造条件。从本文的分析来看,市场中的隐性合谋现象是存在的,但电商间非对称的市场结构对其效果产生了限制。线上价格歧视依然存在,但价格信息的透明化会对其产生限制,使实施基础转向顾客耐心程度等其他方面。

以上结论对于优化线上市场环境、促进数字经济时代的竞争秩序优化具有启示。首先即便是在非对称的寡头垄断结构中 强势电商的定价水平也会受到约束 意味着在行为监管的同时仍然应当关注并维持竞争性的市场结构 防止出现 "赢者通吃"现象。当然 这并不是说要直接干预线上市场结构 而是要建立更加公平的竞争环境。政府可以通过加强普遍性的线上商品质量监管 优化仓储物流、快递配送及行业基础设施建设等措施 ,为消费者或生产商选择在不同电商购买或销售商品提供信心和保障。同时 要重点关注电商利用自身市场势力实行"二选一"等做法(江小涓和黄颖轩 2021);对电商利用"生态圈"相关平台关系刻意采取的外联屏蔽等行为 ,也要加强竞争效应甄别并视情况采取监管措施。其次 ,发挥好线上市场价格透明的优势将有助于改善消费者福利。笔者认为 ,对于价格歧视 ,应更多地通过提高信息的充分性和促进市场竞争来化解。典型地 ,因为急需商品而"买贵"的顾客发现自身受到差别定价待遇并表达不满 ,可以反过来影响电商的公众形象 ,并在其顾客忠诚度、市场需求规模及下一步的定价策略上有所反映。"比价网站"在这一方面具有一定的积极作用 ,而政府可以在数据采集合规性、可信性等方面予以指导和支持。第三 ,从行业长期发展来看 ,应积极引导企业通过后台能力建设来改善服务品质。尤其在线上"购物节"持续多年 ,消费者购买习惯与价格预期产生适应性变化的情况下 ,差异化服务将成为电商提升附加价172

值、形成竞争优势的关键途径。这既有助于线上市场摆脱低水平价格竞争, 也是通过发展数字经济促进供需对接、畅通经济循环的内在要求。

参考文献

姜婷凤、汤珂、刘涛雄 2020 《基于在线大数据的中国商品价格粘性研究》,《经济研究》第6期。

江小涓、黄颖轩 2021 《数字时代的市场秩序、市场监管与平台治理》,《经济研究》第 12 期。

马述忠、房超 2021 《跨境电商与中国出口新增长——基于信息成本和规模经济的双重视角》、《经济研究》第6期。

曲创、刘龙 2021 《互联网平台排他性协议的竞争效应——来自电商平台的证据》、《西安财经大学学报》第3期。

孙震、刘健平、刘涛雄 2021 《跨平台竞争与平台市场分割——基于中国线上市场价格离散的证据》,《中国工业经济》第6期。

汪阳洁、黄浩通、强宏杰、黄季焜 2022 《交易成本、销售渠道选择与农产品电子商务发展》,《经济研究》第8期。

严玉珊 2022 《电商异质性与线上价格离散》,《商业经济与管理》第2期。

张昊 2018 《"电商造节"中的微观价格行为及竞争效应》,《财贸经济》第11期。

张昊、冯永晟 2022 《线上价格为何频繁大幅波动: 引导购买行为的策略性定价》,《世界经济》第3期。

Abreu , D. , D. Pearce , and E. Stacchetti ,1986, "Optimal Cartel Equilibria with Imperfect Monitoring" , *Journal of Economic Theory* , 39(1) ,251—269.

Bakos , J. Y. A. , 1997, "Reducing Buyer Search Costs: Implications for Electronic Marketplaces", Management Science , 43 (12) , 1676—1692.

Belton , T. M. , 1987, "A Model of Duopoly and Meeting or Beating Competition", *International Journal of Industrial Organization*, 5 (4) , 399—417.

Driscoll, J. C., and A. C. Kraay, 1998, "Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data", Review of Economics and Statistics, 80(4), 549—560.

Friedman, J. W., and L. Samuelson, 1990, "Subgame Perfect Equilibrium with Continuous Reaction Functions", *Games and Economic Behavior*, 2(4), 304—324.

Genesove, D., and W. P. Mullin, 2001, "Rules, Communication, and Collusion: Narrative Evidence From the Sugar Institute Case", *American Economic Review*, 91(3), 379—398.

Gorodnichenko , Y. , and O. Talavera , 2017, "Price Setting in Online Markets: Basic Facts , International Comparisons , and Cross Border Integration" , *American Economic Review* , 107(1) , 249—282.

Gorodnichenko , Y. , V. Sheremirov , and O. Talavera , 2018, "Price Setting in Online Markets: Does It Click?" , *Journal of the European Economic Association* , 16(6) , 1764—1811.

Green , E. J. , and R. H. Porter , 1984, "Non-Cooperative Collusion Under Imperfect Price Information" , *Econometrica* , 52(1) , 87—100.

Hviid , M. , and G. Shaffer , 1999, "Hassle Costs: The Achilles' Heel of Price-Matching Guarantees" , Journal of Economics and Management Strategy , 8(4) , 489—521.

Liu, Q., 2013, "Tacit Collusion with Low-Price Guarantees", Manchester School, 81(5), 828-854.

Lu, Y., and J. Wright, 2010, "Tacit collusion with price-matching punishments", *International Journal of Industrial Organization*, 28 (3), 298—306.

Png, I. P. L., and D. Hirshleifer, 1987, "Price Discrimination through Offers to Match Price", *Journal of Business*, 60(3), 365. Sarvary, M., and R. Lal, 1999, "When and How is the Internet Likely to Decrease Price Competition?", *Marketing Science*, 18(4), 485—503.

Sobel, J., 1984, "The Timing of Sales", Review of Economic Studies, 51(3), 353-368.

Stigler, G. J., 1961, "The Economics of Information", Journal of Political Economy, 69(3), 213-225.

Stokey, N. L., 1979, "Intertemporal Price Discrimination", Quarterly Journal of Economics, 93(3), 355-371.

Wang, Z., 2016, "Technical Note-Intertemporal Price Discrimination Via Reference Price Effects", Operations Research, 64(2), 290—296.

Zettelmeyer, F., 2000, "Expanding to the Internet: Pricing and Communications Strategies When Firms Compete on Multiple Channels", Journal of Marketing Research, 37(3), 292—308.

Zhang , Z. J. ,1995, "Price-Matching Policy and the Principle of Minimum Differentiation", Journal of Industrial Economics ,43(3), 287—299.

Dynamic Price Strategy of E-commerce in Asymmetric Competition

ZHANG Hao

(National Academy of Economic Strategy , Chinese Academy of Social Sciences)

Summary: The rapid development of e-commerce in China is remarkable. With the gradual intensification of online market competition, various new phenomena and new features emerge endlessly. China's online market adjusts prices frequently and in large range, and there are both price matching and price dispersion phenomena. In recent years, the "center + fringe" structure has gradually formed, and the market power of e-commerce behemoths has been differentiated. The sophisticated pricing strategy caused by asymmetric competition is further intertwined with the above phenomenon.

This paper examines the dynamic pricing strategy of e-commerce in an asymmetric competition, and analyzes its competitive effect. The results show that e-commerce can conduct price discrimination against customers in urgent need through high-low pricing, and weaken the willingness of competitors to reduce prices through low price matching strategy, thus forming a coordination effect conducive to implicit collusion in the dynamic price adjustment and raising the balanced price for different customer groups in equilibrium. From the perspective of competitive effect, compared with the exclusive selling situation, in a variety of asymmetric duopoly game equilibria with low price matching strategy, the pricing level of the powerful e-commerce is always lower at the high and low prices, while the pricing of the non-powerful e-commerce is likely to be the same or even higher. Based on the model, price and market entry and exit data of the four major categories of household appliances, namely, refrigerators, washing machines, televisions, and air conditioners, collected monthly in JD and Suning from August 2020 to January 2022, the empirical analysis supports the theoretical inference. The conclusion of this paper means that the online market price information is more transparent, and the price adjustment can lead to lower menu cost and faster speed, which may not only intensify the price competition, but create conditions for implicit collusion between businesses. Implicit collusion exists in the market, but the asymmetric market structure has limited its effect. Online price discrimination still exists, but price information transparency can limit such discrimination, and the dimension of price discrimination will shift to other aspects such as customer patience.

The possible marginal contribution of this paper lies in the following aspects. First , this study investigates the pricing behavior and low-price matching strategy of e-commerce at the high and low price levels respectively , and explain it from the perspective of realizing price discrimination and achieving mutual coordination dynamically. Dividing customers into urgent and non-urgent types , we explain the behavioral motivation of e-commerce in adopting the high-low pricing strategy , and dividing urgent-needing customers into loyal and non-loyal customers , we investigate the competitive equilibrium around high prices. Second , this study analyzes the game equilibrium results of asymmetric e-commerce at high and low price levels , expanding the knowledge of the economic results of price matching behavior. This study solves both the static and sequential game equilibrium conditions of e-commerce focusing on urgent consumers and non-urgent consumers , analyzes the competitive effect , and figures out the different performance of price changes caused by entrance or exit of powerful and non-powerful e-commerce businesses. Third , the use of a specially collected dataset on the business behavior of e-commerce household appliances has enriched the micro-examination of the online sales prices at the product level.

The policy implications of this article are as follows. First , even in an asymmetric oligopoly structure , the pricing level of powerful e-commerce companies will be constrained , which means that efforts should be made to maintain a competitive market structure and prevent the phenomenon of "winner takes all". The direct intervention in the online market structure is not advisable; instead , a fairer competitive environment shall be established. Second , we should give full play to the advantages of price transparency in the online market to help limit price discrimination. The price comparison websites play a positive role in this respect , and the government can provide guidance and support in terms of data collection regularity and its credibility. Third , enterprises should be actively guided to improve the quality of services through backstage capacity building , as a key way to enhance added value and form differentiated advantages.

Keywords: Online Price Discrimination; High-Low Pricing; Price Matching; Implicit Collusion

JEL Classification: C72, D43, L13, L81

(责任编辑:王利娜)(校对:曹 帅)